Спираль полинга и кори
Содержание статьи
Как все закручено
Мы привыкли представлять себе ДНК в виде двойной спирали — но это лишь одно из множества ее обличий. С тех пор, как Уотсон и Крик опубликовали свою модель, в клетках человека нашли тройную и четверную спираль ДНК, а еще кресты, шпильки и другие варианты переплетения — некоторые проще нарисовать, чем описать словами.
Набросать идей
Уотсон и Крик не были единственными, кто корпел над трехмерной моделью ДНК. Они даже не были первыми. На обрывках биохимических данных можно было построить самые разные молекулярные формы, и вариантов было множество.
Условия задачи у всех были одинаковы. На начало 1953 года уже было понятно, как устроен нуклеотид:
остаток фосфорной кислоты,
сахар,
одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц).
Еще было известно, что азотистые основания разбросаны по цепи не случайно: в любой молекуле ДНК суммарное количество аденинов и гуанинов строго равнялось количеству тиминов и цитозинов. Кроме того, на всех рентгеновских снимках Розалинд Франклин и Рэймонда Гослинга, независимо от того, какой участок ДНК на них был запечатлен, сама нить имела одну и ту же толщину. Это означало, что форма остается неизменной при любой последовательности нуклеотидов.
Из этих вводных Лайнус Полинг и Роберт Кори собрали свою модель — тройную спираль, ощетинившуюся со всех сторон азотистыми основаниями (фосфату и сахару биохимики отвели роль внутреннего стержня). Эта конструкция выглядела неустойчивой: было непонятно, почему отрицательно заряженные фосфатные группы в центре спирали не отталкиваются друг от друга.
Структура ДНК по версии Полинга и Кори
Linus Pauling, Robert B. Corey / PNAS, 1953
Эту проблему решил Брюс Фрезер, вывернув конструкцию наизнанку: в его варианте три нити смотрели фосфатами наружу. Азотистые основания были обращены внутрь, однако Фрезер так и не смог объяснить, по какому принципу они соединены.
Модель Уотсона и Крика с закрученной вправо двойной спиралью оказалась самой устойчивой. Как и Фрезер, ученые расположили фосфаты снаружи, а азотистые основания — внутри. Был в этой модели и четкий принцип их противопоставления: А на одной цепи всегда соединялся с Т на другой, а Г — с Ц. Это объясняло, почему толщина конструкции стабильна — пары А-Т и Г-Ц примерно одинакового размера.
Карандашный набросок структуры ДНК, сделанный Фрэнсисом Криком
Wellcome Images / CC BY-SA 4.0
Потом были и другие попытки пересобрать ДНК в новую форму. Голландский биохимик Карст Хугстин, например, заметил, что можно соединить те же самые пары нуклеотидов другими гранями, — так спираль тоже оставалась стабильной, но получалась тоньше. Другие авторы изображали ДНК в виде спирали с чередующимися правым и левым поворотами, или даже в виде двух двойных спиралей, которые образуют единую четверку. И хотя существование Уотсон-Криковской двойной спирали с тех пор много раз подтвердилось, в XXI веке продолжают размышлять о том, какие формы принимает нить ДНК внутри клетки, где ее разглядеть намного сложнее, чем в пробирке. Правда, ни одна из альтернативных идей до сих пор не оказалась достаточно хороша, чтобы отказаться от классической правозакрученной двойной спирали.
Уотсон и Крик сделали нечто большее, чем просто разрешили споры о форме ДНК. Их модель сразу же объяснила, как эта форма работает: взаимно однозначное соответствие делает каждую нить шаблоном для другой. Имея только одну из цепей, по ней всегда можно восстановить вторую — на этот принцип опираются все современные модели передачи генетической информации.
Тем не менее, большинство «отвергнутых» идей в чем-то оказались верны. За почти 70 лет пристального разглядывания ДНК в ней удалось обнаружить практически все возможные виды соединения оснований, другие спирали и даже левый поворот.
Свернуть не туда
Уже сама по себе двойная спираль может быть устроена по-разному. Это заметила еще Розалинд Франклин, хотя и не предполагала, что перед ней спираль, да еще и двойная. В обычных условиях, напоминающих внутриклеточные, ДНК на снимках биолога имела «рыхлую» форму, которую Франклин назвала В-ДНК. Но если влажность в пробирке опускалась ниже 75 процентов, получалась А-ДНК, пошире и поплотнее.
А (слева) и В (справа) формы ДНК, какими их увидела Розалинд Франклин
Rosalind Franlkin, Raymond Gosling / Acta Crystallographica, 1953
Как выяснилось потом, А-ДНК действительно закручена туже: в ней на виток спирали уходит 10 нуклеотидов, а не 11, как в В-ДНК. И расположены они не перпендикулярно оси симметрии спирали, а под углом: если в В-ДНК нуклеотиды обычно изображают горизонтальными черточками, в А-ДНК их следовало бы рисовать косыми.
Уотсон и Крик выбрали В-ДНК в качестве основы для своей модели и не прогадали. Позже оказалось, что В-вариант действительно встречается в клетке гораздо чаще, и сейчас его считают основной формой существования ДНК, а все отклонения часто обозначают общим термином «не-В ДНК».
Более того, реальная двойная спираль почти никогда не соответствует своей идиллической модели. В живых системах В-ДНК, как правило, скручена чуть сильнее, чем предсказывали Уотсон и Крик, и среднее число нуклеотидов на виток спирали в ней — не 10 и не 11, а около 10,5. Кроме того, отдельные пары нуклеотидов постоянно отклоняются от положенной «горизонтали» (это называют «пропеллерным поворотом») поэтому спираль никогда не бывает абсолютно гладкой и ровной — то тут, то там по ее бокам торчат шероховатости: концы нуклеотидов под разными углами.
«Пропеллерный» поворот нуклеотидов в В-ДНК
James D. Watson et al. / Molecular Biology of the Gene, 2008
Позже оказалось, что витки спирали могут не только лежать туже или расслабленнее, но и вовсе закручиваться против часовой стрелки (например, влево закручена спираль башни «Эволюция» в Москва-сити, явно символизирующая нить ДНК). По странному стечению обстоятельств, именно такую ДНК увидели в 1979 году, когда появилась наконец возможность рассмотреть нуклеиновые кислоты с высоким разрешением. Это все еще была двойная спираль, но совсем другой формы: 12 нуклеотидов на виток, еще тоньше, чем В-ДНК и закрученная не вправо, а влево. Торчащие ее на поверхности фосфатные группы образовывали не плавную спираль, а зигзаг, поэтому новый вариант назвали Z-формой.
А-ДНК (слева), B-ДНК (по центру), Z-ДНК (справа)
Mauroesguerroto / wikimedia commons / CC BY-SA 4.0
Это, конечно, не означало, что Уотсон-Криковская модель неверна. Z-форму удалось получить при достаточно экзотических условиях — в растворе с высокой концентрацией солей. И в клетке она тоже получается из В-ДНК лишь при определенных обстоятельствах: например, когда «напряжение» на цепи слишком высоко и его необходимо сбросить. Напряжение появляется из-за чрезмерного скручивания: нити ДНК и так завернуты друг относительно друга, но образованная ими двойная спираль накручивается на какой-нибудь белок (например, гистон), возникает так называемая суперспирализация. Переход в Z-форму помогает сбросить напряжение и развернуть лишние витки — а это, в свою очередь, важно, чтобы с ДНК могли связываться новые белки, например, полимераза при транскрипции.
Поэтому ДНК часто принимает Z-форму при транскрипции генов. Более того, чем больше при этом Z-ДНК, тем активнее идет транскрипция. Гистоны с Z-ДНК связаться не могут, поэтому полимеразе никто не мешает заниматься своим делом. И этим, кстати говоря, активно пользуются опухолевые клетки, у которых левозакрученная спираль вовремя возникает перед нужными им генами.
Башня «Эволюция» (на переднем плане) имеет вид левозакрученной ДНК
mos.ru / CC BY-SA 4.0
Потом нашлись и другие формы двойной спирали. В зависимости от влажности, содержания солей и последовательности нуклеотидов в конкретном участке, ДНК может еще сильнее удлиняться (Е-ДНК) или сжиматься (C- и D-ДНК), включать в себя ионы металлов (М-ДНК) или вытягиваться так, что вместо азотистых оснований в центре спирали оказываются фосфатные группы (S-ДНК). А после того, как в список добавились другие типы внутриклеточной ДНК, вроде ядерной N-ДНК и рекомбинантной R-ДНК (которые, впрочем, попали в этот список не из-за своей формы, а положения в клетке или происхождения), в английском алфавите для вариантов ДНК практически закончились буквы. Тому, кто решит открыть еще какую-нибудь неканоническую форму, придется выбирать из пяти свободных: F, Q, U, V, и Y.
A-ДНК — двухцепочечная, чуть толще, чем В.
B-ДНК — та, которую построили Уотсон и Крик.
C-ДНК — двухцепочечная, 9,3 нуклеотида на виток.
D-ДНК — двухцепочечная, узкая: 8 нуклеотидов на виток, содержит много тиминов.
E-ДНК — двухцепочечная, еще уже: 15 нуклеотидов на два витка.
G-ДНК — четверная спираль с гуаниновыми тетрадами.
H-ДНК — тройная спираль.
I-ДНК — две двойные спирали, которые держатся вместе притяжением своих цитозинов.
J-ДНК — еще одна тройная спираль, которую образуют повторы АЦ.
K-ДНК — ДНК трипаносом, особенно богатая аденинами.
L-ДНК — ДНК, в основе которой лежит L-дезоксирибоза (а не D-, как обычно).
M-ДНК — В-ДНК в комплексе с двухвалентными металлами.
N-ДНК — ядерная ДНК.
O-ДНК — точка начала удвоения ДНК у бактериофага λ.
P-ДНК — тройная спираль Полинга и Кори.
R-ДНК — рекомбинатная ДНК (полученная встраиванием чужеродного фрагмента).
S-ДНК — двухцепочечная, вытянута в 1,6 раз сильнее, чем В-форма.
T-ДНК — похожа на D-форму, встречается у бактериофага Т2.
W-ДНК — синоним Z-ДНК.
X-ДНК — двухцепочечная спираль, которую образуют повторы АТ.
Z-ДНК — двухцепочечная левозакрученная.
Попасть в переплет
Помимо всевозможных форм двойной спирали и способов ее плетения, ДНК иногда распадается на отдельные нити, которые образуют в шпильки, кресты и другие двуцепочечные фигуры. Случается и так, что уже существующая двойная спираль обрастает новыми соседями.
В 1985 году выяснилось, что Полинг и Кори тридцать лет назад были правы: тройная спираль ДНК (H-ДНК) существует. Однако устроена она совсем не так, как они предполагали. В настоящей тройной спирали две цепи соединяются стандартным, Уотсон-Криковским способом, а третья примыкает к ним сбоку, ложась в большую бороздку между цепями. При этом азотистые основания третьей, дополнительной нити соединяются с основными парами не классическим способом, а как бы сбоку — теми самыми связями, которые предсказывал Карст Хугстин. Он тоже, в некотором роде, оказался прав.
Тройная спираль, как и многие альтернативные формы ДНК, тоже возникает в ответ на суперспирализацию цепи. Однако, в отличие от Z-формы, она не поддерживает транскрипцию, а наоборот, ей препятствует. РНК-полимераза, которая привычно расплетает две нити перед собой, не всегда справляется с тем, чтобы разделить триплекс. Поэтому если в гене или его регуляторных областях образуется тройная спираль, он работает хуже прочих.
Варианты образования тройной спирали. Уотсон-Криковские пары обозначены черным, добавочный третий нуклеотид выделен цветом
Yutaro Yamagata et al. / Chemistry Europe, 2015
Бывает и так, что соединяются не две и не три, а сразу четыре цепи ДНК. Чтобы это произошло, в одном месте должны встретиться четыре гуаниновых нуклеотида — и неважно, находятся они на двух цепях одной нити или на четырех разных нитях, не связанных друг с другом. Каждый гуанин образует неклассическую, хугстиновскую пару с двумя соседями, а все вместе они создают квадратную гуаниновую тетраду. Если рядом с ними находятся другие гуанины, способные создать квадрат, то из них складывается стэк — стопка, которая удерживает рядом четыре цепи ДНК.
Гуаниновая тетрада (сверху) и варианты расположения цепей в квадруплексе (снизу)
Jochen Spiegel et al. / Trends in Chemistry, 2020
Все 30 лет, что прошли с момента открытия квадруплексов, количество процессов, в которых они так или иначе замешаны, растет. Известно уже больше двух сотен белков, которые могут избирательно распознавать гуаниновые тетрады — вероятно, последние выполняют роль своего рода генетической разметки, очередного способа регулировать упаковку и транскрипцию генов. Например, они часто встречаются в промоторах (регуляторных участках, с которых начинается транскрипция) разных генов. Совсем недавно ученым даже удалось отличить разные типы рака груди через наборы квадруплексов — от них, в свою очередь, зависело, какие гены в опухолевых клетках были гиперактивны.
Чем дальше мы вглядываемся в молекулу ДНК, тем больше замечаем отклонений от давно привычной модели. Двойная спираль — не единственная и не окончательная структура ДНК, а лишь одна (пусть и самая частая) из поз, которую та принимает в непрерывном танце. Повинуясь велению нуклеотидной последовательности, нить ДНК сжимается и разжимается, изгибается, закручивается и принимает бесконечное число (прекрасных) форм. Ни одна из них — не окончательная: альтернативные структуры ДНК переходят друг в друга, конкурируют с В-формой и между собой, подчиняются сигналам клеточных белков и сами направляют их работу.
Найти и возглавить
Неканонические формы ДНК, при всем своем разнообразии, не возникают в случайных местах. Устойчивость им придает определенный набор нуклеотидов в их составе, поэтому и появляются они лишь в тех участках цепи, где для них есть «удобная» последовательность.
Так, например, в ДНК есть определенные участки, которые особенно охотно сворачиваются в зигзаг. Это места, где чередуются пары Г-Ц: после левого поворота в них каждый второй нуклеотид принимает «неправильную» форму, отсюда и ломаный профиль всей Z-формы. Это означает, что последовательности, склонные принимать Z-форму, можно найти прямо в тексте — если видите ГЦГЦГЦГЦГЦГЦ, то вряд ли прогадаете. Так в одной работе, например, насчитали 391 такой участок в человеческом геноме.
Места, в которых может образоваться тройная спираль, тоже можно узнать по характерной последовательности нуклеотидов. Третья цепь присоединяется либо по принципу комплементарности — то есть к паре Г-Ц добавляется еще один Г, образуя Г-Ц*Г — либо «к своему» — и получается Г*Г-Ц. Поэтому часто такая конструкция возникает в тех местах ДНК, где подряд идет несколько одинаковых (например, ГГГГГ) или химически близких (АГГААГ) нуклеотидов и где они образуют палиндромные (зеркальные) повторы.
Точно также по тексту ДНК можно предсказать и появление квадруплексов. По результатам только одного секвенирования (собственно, прямого перевода ДНК в буквы), в геноме человека их нашлось более 700 тысяч. Не все они, вероятно, встречаются in vivo — для этого соответствующем нитям ДНК нужно оказаться рядом в одной точке сложно устроенного клеточного ядра — однако это может означать, что четырехспиральным структурам отведена какая-то специфическая роль в жизни клетки.
Далеко не всегда образование альтернативных форм ДНК идет клетке на пользу: большинство из них куда менее прочны, чем обычная В-ДНК, и гораздо чаще рвутся. Поэтому последовательности, которые склонны образовывать не-В формы, становятся участками генетической нестабильности и повышенного мутагенеза. Одни исследователи видят в этом двигатель эволюции — если такие участки появляются в генах, связанных с развитием организма. Другие же винят альтернативные формы ДНК во всех видах болезней, связанных со случайными мутациями и перестановками в геноме — от опухолей до шизофрении и аутизма.
Получается, что ДНК содержит не только информацию о строении клеточных белков и РНК, но и о том, какие формы эта информация может принимать, помимо Уотсон-Криковского стандарта. А уже от этих форм, в свою очередь, зависит то, что с этой информацией произойдет: сможет ли клетка ее реализовать или ген, будет вечно молчать, а то и вовсе сломается, породив какие-то дополнительные мутации.
Вероятно, мы научимся однажды вмешиваться в этот процесс — можно было бы, например, построить цепь нуклеотидов, которая имитировала бы третью цепь в спирали и «подсунуть» ее в нужное время в нужном месте, чтобы заблокировать работу какого-нибудь нежелательного гена в клетке. Были даже более смелые предложения — использовать тройную спираль для прицельного редактирования генома: ввести в клетку нуклеотид, который сможет образовать с целевым участком ДНК тройную спираль и побудить систему репарации заменить этот участок на «здоровый» вариант с другой хромосомы.
А пока мы этому только учимся, остается признать структуру ДНК еще одним видом информации — помимо генетической (нуклеотидного «текста») и эпигенетической (доступности генов для считывания) — который несет в себе наш геном. И нам еще предстоит научиться с ним работать, влияя через форму на содержание, или наоборот.
Полина Лосева
Источник
Периодичные структуры: альфа-спираль, бета-складчатый слой, спираль коллагена — ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ И ФУНКЦИИ БЕЛКОВ — КОНФОРМАЦИЯ И ДИНАМИКА — БИОХИМИЯ ТОМ 1- Л. Страйер
ЧАСТЬ I. КОНФОРМАЦИЯ И ДИНАМИКА
ГЛАВА 2. ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ И ФУНКЦИИ БЕЛКОВ
2.8. Конформация полипептидных цепей
Поразительная особенность белков состоит в том, что каждый из них имеет четко определенную трехмерную структуру. Как показано ниже, будучи развернутыми или уложенными случайным образом, полипептидные цепи лишены биологической активности. Функциональные свойства белков определяются их конформацией, т. е. пространственным расположением атомов. Важную роль при этом играет последовательность аминокислот, так как в конечном счете именно она определяет конформацию белка.
В конце 30-х годов Л. Полинг (L. Pauling) и Р. Кори (R. Corey) начали проводить рентген оструктурные исследования аминокислот и петидов. Они определяли стандартные длины и углы связей, с тем чтобы исходя из этих данных предсказать конформацию белков. Был обнаружен важный факт: пептидная единица обладает жесткой планарной (плоской) структурой. Водород в замещенной аминогруппе почти всегда занимает трансположение по отношению к кислороду карбонильной группы (рис. 2.33). Связь между атомом углерода карбонильной группы и атомом азота пептидной единицы имеет частично характер двойной связи, и, следовательно, вращение вокруг этой (рис. 2.34) связи должно быть заторможено. Длина связи составляет 1,32 А-среднее значение между длинами одинарной связи С — N (1,49 А) и двойной связи C=N (1,27 А).
Рис. 2.33. Пептидная группа имеет жесткую планарную структуру. Показаны длины связей (в А)
Рис. 2.34. Планарность пептидной группы обусловлена тем, что связь азот-углерод носит частично характер двойной связи
Ангстрем (А)-единица длины, равная 10-10 м. 1 А= 10-10 м = 10-8 см = 10-4 мкм = = 10-1 нм. Названо в честь ученого-спектроскописта А. Ангстрема (1814-1874).
В отличие от рассмотренного случая связь между α-углеродным атомом и углеродным атомом карбонильной группы истинно одинарная. Следовательно, по обеим сторонам жесткой пептидной единицы вокруг этих связей имеется высокая степень свободы вращения (рис. 2.35). Вращения относительно этих связей описываются углами и ф.(рис. 2.36).
Рис. 2.35. В области связей между пептидными группами и α-углеродными атомами имеется довольно высокая степень свободы вращения
Рис. 2.36. Определение углов и ф: характеризует вращение относительно одинарной связи Сα —С; ф характеризует вращение относительно одинарной связи Сα—N. (Levintha! СMolecular model building by computer, Scientific American, Inc., 1966.)
Для полного описания конформации основной цепи полипептида необходимо знать для каждого аминокислотного остатка.
2.9. Периодичные структуры: альфа-спираль, бета-складчатый слой, спираль коллагена
Может ли полипептидная цепь быть уложена в структуру, состоящую из регулярно повторяющихся участков? Чтобы ответить на этот вопрос, Полинг и Кори сравнили ряд потенциально возможных конформаций полипептидов, построив их точные молекулярные модели. При этом строго соблюдались экспериментально установленные для аминокислот и небольших пептидов величины углов связей и межатомных расстояний. В 1951 г. они предложили две периодические полипептидные структуры, названные соответственно α-спираль и β-складчатый слой.
α-Спираль имеет вид стержня. Туго закрученная основная цепь полипептида создает внутреннюю часть стержня, а боковые цепи направлены наружу от основной цепи, располагаясь по спирали (рис. 2.37 и 2.38). α-Спираль стабилизирована водородными связями между NН- и СО-группами основной цепи. СО-группа каждой аминокислоты соединяется водородной связью с NН-группой аминокислоты, расположенной в линейной последовательности на 4 остатка впереди (рис. 2.39). Таким образом, все СО- и NН-группы основной цепи связаны между собой водородными связями. В проекции на ось спирали один остаток отстоит от другого на 1,5 А, а угол между ними составляет 100, т.е. на полный виток спирали приходится 3,6 аминокислотных остатка. Таким образом, аминокислоты, отстоящие друг от друга на 3-4 остатка в линейной последовательности, в структуре α-спирали пространственно расположены очень близко друг к другу. Напротив, аминокислоты, разделенные в линейной последовательности двумя остатками, пространственно располагаются на противоположных сторонах спирали и поэтому взаимодействие между ними маловероятно. Шаг α-спирали составляет 5,4 А2 расстояние между остатками (по оси)-1,5 А и число остатков на один оборот-3,6. Спираль может закручиваться по часовой стрелке (правая спираль) или против часовой стрелки (левая спираль); все исследованные а-спирали белков относятся к правому типу.
Рис. 2.37. Модель правозакрученной α-спирали. А. На спирали показаны только а-углеродные атомы. Б. Показаны только атомы азота (N), образующие скелет молекулы, атомы а- углерода (Са) и карбонильного углерода (С). В. Полное изображение спирали. Водородные связи (на рис. В обозначены красными точками) между NH- и СО-группами стабилизируют спираль
Рис. 2.38. α-Спираль в поперечном разрезе. Обратите внимание, что боковые цепи (показаны зеленым) находятся снаружи спирали. Вандерваальсовы радиусы атомов на самом деле больше, чем изображено на рисунке, вследствие этого внутри спирали почти нет свободного пространства
Рис. 2.39. В α-спирали NР-группа n-го остатка связана водородной связью с СО-группой остатка (n- 4)
Содержание α-спиралей в белках, изученных к настоящему времени, крайне вариабельно. В некоторых белках, например, миоглобине и гемоглобине, α-спираль лежит в основе структуры. Другие белки, например, пищеварительный фермент химотрипсин, практически лишены α-спиральной структуры. Одинарная α-спираль, о которой речь шла выше, как правило, довольно коротка, обычно менее 40 А в длину. Варианты α-спиралей используются при образовании длинных тяжей, достигающих 1000 А и более в длину. Две или более α-спирали могут закручиваться одна вокруг другой, как тяжи в канате. Такая структура-α-спирализованная суперспираль- обнаружена во многих белках; в кератине волос, миозине и тропомиозине мышц, эпидермисе кожи и фибрине, в сгустках крови. Спирализованные «канаты» этих белков выполняют механическую роль, образуя плотные пучки волокон.
«Если принять, что фибриллярные белки эпидермиса, белки кератинизированных тканей, основной белок мышц миозин, а теперь и фибриноген крови-все имеют в основе одну и ту же особую форму молекулярной структуры и потому, вероятно, представляют собой адаптационные варианты одного исходного принципа, то здесь мы, видимо, столкнулись с одним из великих фактов эволюции биологических молекул».
К. Bailey, W.T. Astbury, К. М. Rudall, Nature, 1943
Структура α-спирали была предсказана Полингом и Кори за 6 лет до того, как ее удалось экспериментально выявить методом рентгеноструктурного анализа миоглобина. Открытие структуры α -спирали представляет собой важную веху в развитии молекулярной биологии, поскольку это открытие доказало, что можно предсказать конформацию полипептидной цепи, если точно известны свойства ее компонентов.
В тот же год Полинг и Кори открыли другой вариант периодической структуры, который они назвали β-складчатым слоем β потому, что это была вторая-после α-спирали — открытая ими структура), β-складчатый слой существенно отличается от α- спирали тем, что он имеет плоскую, а не стержневидную форму. Полипептидные цепи в β-складках почти полностью вытянуты (рис. 2.40), а не туго скручены, как в α-спирали. Расстояние по оси между двумя прилежащими аминокислотами составляет 3,5, а не 1,5 А, как в α-спирали. Другая особенность β-складчатой структуры состоит в том, что она стабилизирована водородными связями между NH- и СО-группами разных тяжей полипептидных цепей, тогда как в а-спирали водородные связи образуются между этими группами в пределах одной и той же полипептидной цепи. Прилежащие цепи в складчатом β-слое могут идти в одном и том же направлении (параллельный β-слой) или в противоположных направлениях (антипараллельный β-слой). Например, фиброин шелка состоит почти целиком из «штабелей» антипараллельных β-складчатых слоев (рис. 2.41). Аналогичные области β-склалчатых слоев встречаются во многих других белках. Особенно широко распространены структурные единицы, состоящие из 2-5 параллельных или антипараллельных β-складок.
Рис. 2.40. Конформация дипептидной единицы в складчатом β-слое. Полипептидная цепь при этом практически полностью вытянута
Рис. 2.41. Антипараллельный β-складчатый слой, Прилежащие тяжи полипептидной цепи идут в противоположных направлениях. Структура стабилизирована водородными связями между NН- и СО-группами прилежащих тяжей. Боковые цепи (показаны зеленым) лежат выше и ниже плоскости слоя
Третий тип периодической структуры — коллагеновая спираль-будет подробно рассматриваться в гл. 9. Эта специализированная структура обеспечивает высокую упругость коллагена-основного компонента кожи, костей и сухожилий.
Источник