Доярки не болели оспой

Как преступники и доярки помогли придумать первые вакцины. Конспект книги Дэвиса Дэниэла «Невероятный иммунитет»

В издательстве LiveBook вышла книга профессора иммунологии Манчестерского университета Дэвиса Дэниэла «Невероятный иммунитет. Как работает естественная защита вашего организма». Она рассказывает об истории научных открытий и о том, как работает иммунитет человека. Мы решили пересказать для вас самую интересную главу, где речь идёт об изобретении прививок.

Рассылка «Мела»

Мы отправляем нашу интересную и очень полезную рассылку два раза в неделю: во вторник и пятницу

Как преступники помогли придумать вакцины

Люди делали прививки ещё до того, как поняли принцип их работы: «Целенаправленное заражение организма с целью его защиты — прививка — применялось в Китае, Индии и некоторых африканских странах намного раньше, чем сложились формальные медицинские процедуры». С научной точки зрения к вопросу подошли только в 1721 году, когда королевская семья Великобритании всерьёз обеспокоилась эпидемией оспы.

Многие приближенные к монарху слышали о народном способе борьбы с болезнью — сегодня мы называем его вакцинацией — но недоумевали, как он работает на практике. Заражённое вещество лучше взять из волдыря? Или, возможно, вредную жидкость лучше получить другим методом? На тот момент врачи уже знали, что оспой болеют только раз в жизни. Поэтому эффективность удачной прививки, благодаря которой можно было бы ликвидировать эпидемию, трудно было переоценить.

Первые прививки сделали преступникам, которые ожидали исполнения смертного приговора

Шесть узников тюрьмы заразили гноем страдавших оспой, и через пару дней у них действительно появились признаки тяжёлой болезни. Эксперимент завершился удачно: нарушители закона очень скоро выздоровели, и 6 сентября 1721 года король Георг I помиловал осужденных: «Их иммунные системы уберегли их сразу от двух казней — от эшафота и от оспы».

Прошло меньше года, как будущие король и королева, а пока принц и принцесса Уэльские, захотели привить своих детей. Об этом стали писать в газетах, и под влиянием авторитетов общественное мнение одобрило новую медицинскую технологию. Однако нашлись и противники вакцинации: например, один лондонский священник пугал верующих, что прививка — страшный грех. Были и другие причины с осторожностью относиться к этому ноу-хау: приблизительно 2% людей умирали после сделанной прививки.

Почему доярки не болели оспой

Рецепт хорошей прививки был найден Эдвардом Дженнером. Опыт работы сельским врачом в городе Беркли, Глостершир, помог ему сделать одно важное наблюдение: ни одна доярка не страдает оспой. Дженнер предположил, что более слабая форма этой болезни, которой девушки заражались от коров, делала организм неуязвимым для сильной инфекции.

Доярки не болели оспой

Эдвард Дженнер

Прежде чем объявить о своей находке, Дженнер решил проверить гипотезу. 14 мая 1796 года он взял пробу гноя у доярки Сары Нелмз, заразившейся коровьей оспой, и привил этим веществом Джеймза Фиппса, восьмилетнего сына своего садовника. Затем Джеймзу ввели гной пациента, больного обычной оспой, и Джеймз не заболел.

Королевское общество не захотело признать открытие Дженнера: эксперимент требовал участия более чем одного испытуемого. Но доктор не растерялся: через некоторое время он успешно повторил свой опыт на других детях, включая своего одиннадцатимесячного сына.

Через несколько лет друг Эдварда Дженнера подарил название открытию — «вакцина» (слово восходит к латинскому слову «vacca», «корова»). Оспа — это первая инфекция, которую человечество целиком уничтожило к 1980 году.

Доярки не болели оспой

Эдвард Дженнер делает прививку Джеймзу Фиппсу

Почему прививки не всегда работали

В 1926 году лондонский доктор Александр Гленни с командой рассматривал воздействие дифтерийного белка на организм. Оказалось, что токсин, введённый испытуемым, вызывал лишь кратковременный эффект. Иммунным клеткам не удавалось на долгое время «запомнить врага в лицо». Однако позже Гленни обнаружил, что если дифтерийный белок чистить с использованием соли алюминия, токсин будет сохраняться на срок достаточный, чтобы иммунный отклик произошёл. Позднее такие вещества, помогающие вакцине качественно работать, стали называть адъювантами (от латинского слова «adiuvare — «помогать»).

В 1989 году перспективный иммунолог Йельского университета Чарльз Джейнуэй бился над решением важной проблемы: прививки работали не всегда. Изучая уже известные эксперименты с вакцинацией, он вернулся к исследованиям доктора Гленни.

Чарльз Джейнуэй не понимал секрет адъюванта — этого волшебного ингредиента, от которого зависит, распознает организм вредные бактерии или нет. Пытаясь узнать, почему адъювант так нужен, он узнал ответ на другой вопрос, гораздо более масштабный.

Как клетки в организме распознают «врагов»

Джейнуэя не устраивали представления современников об иммунной системе, которая якобы действовала по принципу «свой-чужой», уничтожая все клетки, прибывшие «с другой планеты». Ведь частицы шоколада — как и бактерии, живущие в кишечнике — имеют чужеродное происхождение, однако наш организм не сопротивляется ему (только сила воли после девяти вечера пытается что-то сказать). Учёного также смущало отсутствие интереса к таким, казалось бы, простым механизмам, как реакция организма на порез. Многие воспринимали его как данность. В то время как по-прежнему оставалось непонятным, какие вещества заставляют организм откликаться на угрозу.

На нью-йоркском научном съезде в июне 1989 года Джейнуэй решил озвучить свои тезисы. Его выступление напоминало формат лекции TED: в яркой и лаконичной форме Джейнуэй поделился своими мыслями по поводу механизма активации иммунитета. По мнению исследователя, у иммунной клетки должен был существовать способ, позволяющий ей обнаружить присутствие микроба прежде, чем начать бороться с ним.

Эту функцию как раз и берёт на себя врождённый иммунитет. С помощью специальных «образ-распознающих» рецепторов иммунная клетка способна «заметить» в окружающей среде определённые структуры. Они характерны именно для микробов и практически не меняются при мутациях. При обнаружении этих структур (и именно их имитирует адъювант) запускается иммунный ответ.

Читайте также:  Оспа овец опасна ли для человека

Однако речь Джейнуэя не имела успеха, потому что его гипотезе пока не было доказательств.

Русский след в иммунологии

Этот сюжет мог бы стать счастливой находкой для киносценариста: на неудачном выступлении Джейнуэя история не заканчивается, напротив, она обрастает интересными подробностями.

В 1992 году аспирант МГУ Руслан Меджитов наткнулся на теорию Джейнуэя и осознал её ценность. Пошли месяцы переписки между учёными по электронной почте с аккаунта МГУ, который разрешал отправлять по триста слов в день. Приходилось сохранять входящие и исходящие сообщения на дискету и передавать её заведующему компьютером (были и такие должности!). В конце концов молодой учёный занял деньги у брата и уехал в США, где через некоторое время стал работать с Джейнуэем. Вместе они пытались доказать, что образ-распознающие рецепторы действительно существуют.

Параллельно с этой сюжетной линией развивалась вторая: на примере плодовых мушек исследователь Жюль Офман изучал работу иммунной системы насекомых. Учёные пришли к выводам, которые сделали многое тайное в исследовании врождённого иммунитета явным: во-первых, они выявили у плодовых мушек ген (толл-ген), помогающий им справляться с грибковой инфекцией. Во-вторых, стало ясно, что толл-ген включен в эмбриональное развитие насекомого и является частью его иммунной системы.

Доярки не болели оспой

Чарльз Джейнуэй (1943–2003) и Руслан Меджитов

Эта новость подтолкнула ком долгожданных открытий, который по мере движения набирал обороты. Меджитов нашёл эквивалент толл-гена насекомого у человека — ему дали название TLR 4. Затем было доказано, что он мобилизует другие гены, связанные с иммунным откликом. И всё же оставалось неясно, с помощью какого механизма толл-ген пробуждает дружественные клетки организма, чтобы бороться с болезнью.

5 сентября 1998 года, когда Брюс Бётлер, проводивший исследование на мышах, обнаружил у них похожий ген в и понял, в чём его назначение и у мыши, и у человека. Оказалось, что ген TLR4 кодирует образ распознающий рецептор, который соединяется с адъювантом микроба.

В 2011 году Брюс Бётлер и Жюль Офман получили Нобелевскую премию по физиологии и медицине за открытие механизма активации врождённого иммунитета, о котором ещё в 1989 году говорил Чарльз Джейнуэй. К сожалению, учёный-визионер скончался за несколько лет до революционного открытия.

Источник

Дояркина вакцина

Провинциальный английский врач Дженнер создал вакцину от оспы на сто лет раньше вакцин Луи Пастера.

История открытия Дженнером прививки против оспы хорошо известна всем, кто не прогуливал уроки биологии в школе. Вкратце она такая. Оспа, она же натуральная оспа, она же черная оспа, была страшной болезнью. Она передавалась воздушно-капельным путем, была исключительно контагиозна, то есть риск заразиться от больного практически был равен 100%. От нее умирало до 40% заболевших. Особенно высокая смертность была у детей. Выжившие до конца жизни были обезображены оспенными шрамами. Доходило до того, что в полицейских ориентировках на розыск преступников в ряду особых примет писали «знаков оспы не имеет».

Народная вакцинация

Далее в учебниках и энциклопедиях принято писать, что на Востоке и в Африке еще за тысячи лет до Дженнера спасались от оспы, втирая себе гной из оспенных язв больного. Смертность после этой процедуры доходила до 2%, что совершенно недопустимо для современных вакцин. Но остальным 98% это помогало, они не болели оспой. Однако принуждения к такой вакцинации нигде никогда не было, и пользовались ею слишком мало людей, чтобы остановить эпидемии.

Считать народ в Европе глупее африканцев, арабов, китайцев или индийцев нет оснований. Наверняка такая же народная вакцинация испокон веков была и в Европе, в таких же масштабах и с тем же успехом. В современной научной литературе, чтобы отличать ее от классической вакцинации, эта процедура (прививка гноем больного оспой) называется вариоляцией (от латинского родового названия вируса оспы Variola).

В XVIII веке ситуация в Европе изменилась, здесь впервые в истории людей к вакцинации от оспы начали принуждать. Сам Дженнер в детстве, в школе-интернате, подвергся вариоляции. По медицинским канонам того времени перед прививкой учеников шесть недель держали на голодной диете, периодически пускали кровь и ставили клизмы. Понятно, что такая вакцинация энтузиазма у народа не вызывала, ее всячески избегали, и на статистику заболеваемости оспой она практически не влияла.

Мальчик для вакцинации

В 1796 году Эдвард Дженнер, практикующий врач из небольшого английского городка Беркли, привил восьмилетнему сыну своего садового работника Джеймсу Фиппсу легко протекающую у человека коровью оспу. Материал прививки он взял из оспенного нарыва на руке доярки по имени то ли Сара, то ли Люси (Дженнер точно его не запомнил и в своих научных трудах потом писал то так, то эдак). После этого он трижды на протяжении пяти лет пытался заразить мальчика Фиппса черной оспой путем вариоляции. Тот не заболевал. После этого прививать от оспы стали коровьей (или лошадиной) оспой. А Дженнер вошел в историю как человек, избавивший человечество от черной оспы.

Не сам, конечно, избавил, это за него сделала Всемирная организация здравоохранения ООН, которая в 1959 году на XII Всемирной ассамблее здравоохранения приняла программу глобальной ликвидации натуральной оспы путем поголовной вакцинации. По предложению СССР, между прочим, приняла. К 1980 году эта программа была успешно выполнена. Натуральная оспа — единственная болезнь человека, которая целиком и полностью ликвидирована на всех континентах. Вирусы человеческой оспы остались сегодня только в двух охраняемых репозиториях: в Центре заболеваний и профилактики в Атланте (США) и в Государственном научном центре вирусологии и биотехнологии «Вектор» в новосибирском Кольцово.

Читайте также:  Алгоритм действий при ветряной оспе

Наука требует жертв

При знакомстве с этой хрестоматийной историей открытия Дженнера остается неприятный осадок. Прежде всего возникает вопрос: почему он выбрал для своего опыта ребенка, причем не своего, а чужого, и не просто чужого, а сына своего слуги, то есть зависимого от него человека. Целиком и полностью, добавим, зависимого: папаша Фиппс был типичным люмпеном, не имел ничего своего, кроме жены и детей, кров и хлеб им давал доктор Дженнер.

Вакцинация малолетнего Фиппса была публичной. На ней присутствовала комиссия медиков и толпа местного народа. Дженнер специально сделал ее публичной, потому что его научные труды не печатали в научных журналах, а ученые медики считали его дилетантом в науке и относились к его идеям свысока. Историки науки, прекрасно понимая двусмысленность ситуации с вакцинацией несовершеннолетнего ребенка, обычно оправдывают Дженнера тем, что коровья оспа не опасное для человека заболевание и что за шесть лет до этого он произвел намного более опасную процедуру вариоляции своему младшему сыну, когда заболела оспой его няня.

Но, во-первых, ему не оставалось ничего иного: няня-то его ребенка заболела, следующим должен был заболеть оспой его сын. Во-вторых, коровья оспа действительно мало чем грозила мальчику Фиппсу, ему смертельно угрожало то, что доктор Дженнер делал с ним потом. Он, как уже сказано, трижды намеренно заражал его черной оспой, и при этом Дженнер не мог точно знать, что прививка коровьей оспой сработает. Убедился он в этом только после третьей прививки Фиппсу, которому тогда было уже 13 лет и он, наверное, уже понимал, что с ним делают.

Впрочем, сегодня бесполезно рассматривать этику эксперимента Дженнера, особенно с позиции Ивана Карамазова, который считал, что никакая высшая цель не стоит слезинки хотя бы одного ребенка. У ученых всегда была своя этика, у ученых-протестантов XVIII века, каковым был Дженнер,— своя, у Достоевского — своя, на все этики не угодишь. Главное, что в данном случае все у всех закончилось благополучно.

Хеппи-энд

Дженнер получил то, чего добивался: он был признан ученым, причем выдающимся ученым, из тех, кто меняет мир. Человечество получило вакцину от оспы на сто лет раньше пастеровских вакцин от других болезней.

Удачно получилось и то, что Дженнер выбрал в качестве объекта исследований именно оспу. Возьми он холеру, чуму или любую другую инфекцию, ничего у него не вышло бы. Оспа — антропонозное заболевание, иными словами, ее вирус носят только люди. Природный резервуар вирусов у животных, откуда идет постоянная подпитка вирусами или бактериями у других инфекций, в данном случае отсутствовал. Не существовало хронического носительства вируса, и не было бессимптомной формы заболевания, а кожная симптоматика была настолько четкой, что сразу было видно, что человек болен не чем-то иным, а именно оспой. Инфицированные были не заразны до появления симптоматики и после выздоровления. Вирус был нестойкий к внешней среде, сразу погибал вне тела человека, что ограничивало возможности заражения. Ни один из вариантов вируса оспы не мог избежать защитного иммунитета (выработанного организмом после прививки) из-за присутствия множественных антигенов и антигенного варьирования в связи с высоким сродством к вирусной ДНК-полимеразе. Проще говоря, вакцина одинаково эффективно создавала иммунитет против любого штамма вируса оспы, чего в случае гриппа ученые до сих пор не могут добиться. Там каждый штамм вируса требует свою вакцину.

У подопытного мальчика Фиппса тоже жизнь удалась. Он вырос, женился и в подарок от хозяина получил в безвозмездное пожизненное пользование дом в Беркли, где прожил со своей женой и двумя детьми до самой своей смерти в 65-летнем возрасте. Сейчас в этом доме музей Дженнера. На этот двухэтажный особняк метров пятьсот общей площадью можно посмотреть в интернете. Сейчас аренда такого дома, наверное, целое состояние стоит.

Прецедент доктора Дженнера

Своим подарком Фиппсу доктор Дженнер на двести с лишним лет предвосхитил те правовые коллизии, которые сейчас складываются в медицинской генетике и клеточной терапии. Обычно все доноры генов и клеток делают это в ходе своего лечения добровольно и безвозмездно, подписывая соответствующее соглашение. Но потом, когда на рынок выходит полученный на основе их генов и клеток препарат, приносящий его производителю многомиллионные прибыли, донору может стать обидно. А его адвокат, пользуясь пробелом в правовом урегулировании таких ситуаций, может не оставить камня на камне от этого соглашения как дискриминационного в отношении прав пациента. Во всяком случае, сейчас в научной юриспруденции заметен бум публикаций по теме ELSI (Ethical, Legal and Social Implications) — этических, правовых и социальных последствий в новых областях биомедицинских исследований.

Как это будет в реальной жизни, покажет ближайшее время. Но прецедент доктора Дженнера, добровольно подарившего своему подневольному пациенту счастливую и безбедную жизнь в его, пациента, собственном доме, наверняка будет одним из самых частых аргументов в судах при подобных разбирательствах.

Читайте также:  Импортная вакцина ветряная оспа

Сергей Петухов

Источник

Как набюлюдение за доярками, забывчивость и другие стечения обстоятельств привели к прорывам в медицине

Путь к медицинским открытиям следует извилистым маршрутом. Он делает непредвиденные повороты и зигзаги, сливаясь с проторенными дорогами и уходя далеко в сторону. В этой статье речь пойдет о самых неожиданных открытиях в медицине. Об ученых, чей пытливый ум, помог изменить взгляд на эту науку.

Текстильный микробиолог

В XVII веке нидерландский торговец тканями увлекался конструированием микроскопов, ему нравилось и рассматривать в них различные вещи. Возможно, он хотел исследовать качество своих товаров, или, быть может, просто удовлетворял любопытство. Как бы то ни было, он любил исследовать все, что попадалось под руку. Стоячую дождевую воду, блохи, навоз, сперму животных. Его любознательность зашла так далеко, что он принялся рассматривать собственный зубной налет.

Картина Эрнеста Борда. «Антони ван Левенгук с микроскопом»

«Эти маленькие зверьки, на мой взгляд, в десятки тысяч раз меньше, чем водяная блоха или вошь», – писал торговец в Лондонское Королевское общество.

Мужчина на протяжении пятидесяти лет засыпал Лондонское королевское общество по развитию знаний о природе отчетами, не встречая достойного понимания. Звали этого джентльмена Антони ван Левенгук и именно он первым описал эритроциты, «круглые» (кокки), «палочковидные» (бациллы) и «спиралевидные» (спирохеты) бактерии, заложив основу для современной бактериологии.

Послушай сельский фольклор

Происхождение оспы неизвестно. Считается, что она косила людей в Египте еще в третьем веке до нашей эры. Из 10 заболевших выживали 6-7 человек. Не обошла беда и Англию.

Распространенное в те времена народное поверье гласило: переболевший коровьей оспой, человеческим вариантом этой болезни уже не заразится.

Сельский врач Эдвард Дженнер внимательно прислушивался к этим слухам, наблюдая за здоровьем деревенских доярок. Он стал первым, кто провел научную параллель между этими двумя болезнями.

Эдвард Дженнер разработал первую в мире вакцину

Профилактическая иммунизация против оспы применялась давно. Она описывалась в Китае, Индии, Африке, Османской империи. У заболевшего человека вскрывалась язва, и материал переносился здоровому. Болезнь возникала, но смертность была ниже. Чтобы создать свою вакцину, врач собрал жидкость коровьей оспы с руки доярки Сыры Нельмес, и привил ее 9-летнему Джеймсу Фиппс. Через 6 недель Дженнер привил мальчику споры натуральной оспы, и реакции не возникло. У ребенка появился иммунитет.

Эксперимент с катодными лучами

Перелом костей, пневмония, сердечная недостаточность и многое, многое другое легко определяется современными врачами, с помощью рентгеновских снимков. А ведь сравнительно недавно, человека приходилось резать, чтобы посмотреть: а что там у него внутри?

Профессор физики в Вюрцбурге, Бавария, Вильгельм Рентген совершил открытие случайно, при проведении опытов в 1895 году. Он проверял, смогут ли катодные лучи проникать сквозь стекло. Лампа была закрыта черной бумагой, но зеленый свет, все же вырывался, и проецировался на флуоресцентный экран.

Вильгельм Рентген и снимок кисти руки

Продолжая эксперименты, Рентген убедился, что лучи, проникая сквозь ткани человека, делали кости видимыми.

Открытие облетело весь мир, принеся ученому славу и Нобелевскую премию в 1901 году.

Забыл вымыть посуду

Невозможно представить, каким был бы современный мир без пенициллина. Он легко лечит инфекции, считавшиеся ранее тяжелыми и смертельными: бактериальный эндокардит, менингит, пневмококковая пневмония, гонорея, сифилис… На его основе создано множество антибиотиков, ежедневно спасающих человеческие жизни. А как все начиналось?

Александр Флеминг. Источник изображения: wikimedia.org

После двухнедельного отпуска в 1928 году, Александр Флеминг (1881-1955) обнаружил заросшую плесенью лабораторную чашку, которую забыл продезинфицировать. Проблема заключалась в том, что в емкости развивалась одна из колоний золотистого стафилококка. Случайно занесенные споры пенициллия практически ее уничтожили. Проведя дальнейшие исследования, Флеминг отметил, что Penicillium notatum не только контролирует рост многих бактерий, но и убивает. Составив отчет, ученый отложил его в сторону.

Его исследования были продолжены и завершены Говардом Флори и Эрнстом Чейном, сотрудниками Оксфордского университета. Все трое разделили Нобелевскую премию по физиологии и медицине в 1945 году.

Не реагируют на пластик

Николас Гарольд Ридли

Будучи хирургом-офтальмологом во время Второй мировой войны, доктору Николасу Гарольду Ридли (1906-2001) пришлось оказывать помощь пилоту Королевских ВВС Гордону Кливеру. Его глаза были поражены осколками пластика, от попадания снаряда в кабину пилота. После нескольких осмотров врач обнаружил, что пластик не подвергается активному отторжению из ран пациента.

Вооруженный этими наблюдениями, и годами последующих исследований, в 1949 году Ридли провел операцию, по извлечению катаракты и имплантации пластиковой линзы. Первоначально, такой подход был, с гневом, отвергнут коллегами врача. Но время шло, операция была повторена миллионы раз по всему миру. Ридли оказался прав, а офтальмология навсегда изменилась.

Изобретение анестезии, инсулина, пероральных средств, для свертываемости крови, обнаружение бактерий, являющихся причиной развития язвы желудка… Все это было открыто, благодаря счастливому стечению обстоятельств. И как тут не поверить в волю Провидения?

Источник